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Substituting (5) and (6) for IV and ~> in (4), we have

where .4 = w:, a constant at a given w and z.
only requirement to guarantee the proportionality
validity of (1) is

(7)

(7) shows that the
of Q and R, or the

///E . E* du

= B = constant.
L

(J )
2 (8)

E.dl
a

In the following, we are to prove that (8) holds no matter how large
the Q variation so long as such a change is caused only by a change
in the power loss, PL.

According to [3], PL and W are both proportional to the square

of the field strength; thus PL at any instant of time is proportional
to IV, i.e.,

PL=–y=2flM7 (9)

where a is an attenuation factor.
The solution of (9) is

U’ = W“oe-zmt (lo)

and

(11)

Equation (11 ) shows that the Q is determined by ct for a given W.
Because of (10), E at this instant can also be expressed as

E = Eoe–”l (12)

where EO is the spatial distribution of E. Substituting (12) for E in

(8), we obtain

///E. E’dv

B= ’Jr ~

(~Edl)2

e –Zat J//EO . E: dv

—

‘-’”’h+’‘BO’13)
which indicates that the constant B is not a function of a, and,
therefore, not a function of Q either for a given frequency. Con-

sequently, any Q variation caused by a power loss variation in the

cavity would not alter the constant C in (l). Therefore, (1) holds

over an unlimited Q range.

In practice, Q variation can be caused by the variation in the power

loss and by the variation in the field spatial distribution, EO. For the
former case, we have proved (1) to hold, However, for the latter case,
(1) may or may not be valid depending on whether the constant B is

altered as a result of the variation in EO, for, in essence, validation
of (1) only requires invariance of the constant B. Note that B is a

ratio of two integrals of EO; a change in EO, particularly, a small
local change as in all perturbations, does not necessarily change this

ratio. Therefore, a linear relation between Q and R holds not only
in the situations where the Q variation is caused by the variation in
power loss, but also in many situations where the field distribution has
somehow been changed but the constant B does not. We have recently
applied this concept in the design of a self-heating single-frequency
high temperature dielectrometer with excellent results.
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Transient Analysis of Lossy Coupled Transmission Lines in
a Lossy Medium Using the Waveform Relaxation Method

F. C. M. Lau and E. M. Deeley

Abstract-The waveform relaxation method has been shown to be both
efficient and accurate when apptied to coupled transmission tines with
conductor losses. In this paper, the method is generalized to include the
dielectric loss surrounding the transmission lines. The distributed loss
model assumes that the conductance matrix is approximately diagonal
and its product with the resistive matrix is a scalar matrix. Computa-
tional results using the model is presented and compared with HSPICE
solntions.

I. INTRODUCTION

Recently. the method of characteristics has been generalized by
Chang [1] for waveform relaxation analysis so that time-domain sim-
ulations of lumped-parameter networks interconnected with coupled
transmission lines can be carried out more efficiently. It has been
shown by the present authors [2] that solution problems related to
the presence of dc components can arise, leading to a complete
breakdown of the iterative process, and a modified iterative algorithm
has been proposed to overcome these problems. In this paper, the

dielectric leakage of the medium in which the transmission lines are
embedded is taken into consideration.

II. COUPLEDLINES WITH PARTICULAR
CONDUCTORAND DIELECTRIC Loss MATRICES

Under general conditions, the voltages and currents along a set of
lossy coupled transmission lines, each of length 1, are described by
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the generalized telegraphist’s equation:

Cb(x, t)=_ Lf5i(z, t)

(5X tit
– Ri(x’, t) (la)

6i(r, t) = _c6v(z$t) – Gv(r, t)

6X tit
(lb)

where V(z, t)and i( r, t) are column vectors defining the voltages

‘o~(~,t) and currents i~(z, t) on the conductors k = 1, 2, . . ., n. R
is the diagonal matrix of the per-unit-length (PUL) resistance of the
conductors. G is the nxn symmetric matrix of the PUL conductance
of the surrounding dielectric medium. L and C are the n xn symmetric
matrices of the PUL inductance and capacitance, and:

LC = (1/v2 )1. (2)

where v is the wave propagation velocity and 1. is the nth-order

identity matrix, assuming the medium is homogeneous.

A. Analysis in the S-Domain

If the dielectric loss to ground is much more significant than the
loss between the lines, the dielectric matrix G in (lb) will be nearly

diagonal. If, furthermore, the product of the matrices R & G is a
scalar matrix (multiple of the identity matrix), which is always the
case for identical lines, i.e.

RG = mI. (3)

itcan be proved that the lossy stripline system is equivalent to a set
of decoupled RLCG transmission lines connected with congruence

transformers. One system satisfying such conditions is a set of
lossy coupled transmission lines running parallel to each other. The
configurations of the lines are identical and the lines are the same

distance from the ground plane. Under such conditions, the conductor
loss and the dielectric loss to ground are the same for each line. If the
dielectric loss between the lines is negligible, the relation RG = rnIn

will also be satisfied.
Using the decoupling procedures in [1] to evaluate the transforma-

tion matrix [X] and apply it to (1) with (2) and (3), the following
equations are obtained:

Ae(.r, t)

—($X =
_L~~f’~) _ fij(r, ~) (4a)

tij(x,t) = _c6e(z’f) – Ge(.r, t)
($Z l$t

(o<x<l) (4b)

which describe a set of n decoupled RLCG transmission lines and

~=diag(L~l~~) L = diag(L~j

()1C = diag —
()

G = diag ~ (5)
#-LL

are all diagonal matrices, where { m } are the eigenvalues of the
ma~ix ~,–~/ZLR–~/Z, and R–112 = diag(R~l’2).

Assuming the lines are terminated in Thevenin equivalent circuits,
it can be shown that the transmission-line terminal voltages are given

by

VA =(I. ‘~)-1~.4 (6a)

=UA+PU.4+ P2U,4+P3UA +... (6b)

VD =(~n – Q)-lCTD (7a)

=UD+QUD +Q2UD+Q’UD +... (7b)

where

P = (1. + pA)@/JD@JA(In + pA)-l (8a)

Q = (1. + PD )@P.4@PD(~. + PD)-l (8b)

U.4 = (1/2)[(1. + PP~l)(~. – PA)E.~

+ (In + p.4)@(In – PD)E>’] (SC)

UD = (1/2)[(1.+ PD)@(~n – PA)~x

+ (I. + QPB1)(In – p~)-%-] (8d)

pA =(ZX – ZO)(ZX +.%-l (8e)

pD =(ZY – ZO)(-ZI- +ZO)–l. (8t3

The characteristic impedance matrix and the exponential propaga-
tion matrix of the lossy stripline system are respectively

ZO = Xdiag(ZOk)Xt (9a)

@=X diag[exp(-O~)]X-l (9b)

where the characteristic impedances {ZOk} and the propagation
functions {Ok} are defined in terms of the decoupled transmission-line
parameters:

ZO. = ~(Rk + sLk)/(Gk + sCk) (9C)

~~ = ~(& + sLk)(Gk + sCk)l. (9d)

B. Waveform Relaxation Algorithm

The waveform relaxation algorithm used here is similar to that
described in [1] and [2] with some differences. The decoupled
transmission lines in the equivalent circuit are now of RLCG type
instead of RCL type. As a result, the characteristic impedances {ZO~}
and the propagation functions {L9~} have different expressions, as
given in (9) . Each of the decoupled lines is transformed into the
equivalent model as shown in Fig. 2 and each of the characteristic
impedances {ZO~} is modelled by a Pade approximation as described
in [3]. The waveform relaxation algorithm used to simulate such a
system is now explained.

Step 1: Given a set of coupled transmission lines with conduc-
tor and dielectric loss matrices satisfying RG = mIn, and terminated
in Thevenin equivalent circuits {Ilx, 2X} & {~>-, Z]-}, an initial

dc analysis [3] is first performed (since R is diagonal, so is G)
to derive the initial terminal voltages and currents vao, v~o, iao,

i~o, where the subscripts a and d refer to the near-end and far-end
terminals of the stripline system respectively.

Step 2: Decouple the stripline system by placing congruence

transformers at the ends. Replace each of the n decoupled RLCG
transmission lines by an equivalent disjoint 2-port network. The
equivalent system is shown in Fig. 2, where k is the iteration
counter. The lossy characteristic impedances are synthesized by
ladder networks [3] with circuit elements defined in terms of the
decoupled lossy transmission-line parameters.

Step 3: The two-part network reproduces the exact initial ter-
minal characteristics by assigning the FFT waveform generators with
the initial values

W.O = X–lvaO – diag(H, )Xtiao

Wdo =x–l Vdo + diag(lT, )Xtido.

where H, is the dc resistance of the characteristic impedance of the
i th decoupled transmission line.

Step 4: Initialize the iteration counter (k = J) and the FFT

waveform generators:

(o)(t) = Wta(lu(t)“az
i=l,2, . ...n

where w,~o is the ~ th element of the vector w~O and u(t) is the
step function.

Step 5: Connect the Thevenin equivalent circuit {Ex. 2X} to
Subcircuit I and carry out the transient analysis for the entire time
interval (O < f < T) to obtain the terminal voltage waveforms

{V!k)(t)}.
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Fig. 1. The decoupled equivalent circuit of an n-conductor 10SSYcoupled transmission-line system.

Subcircuit I Subcircuit II

[x]

==kW:-l)w
I I
1 J

.
.

.

.

I 1 .

[x]

Fig, 2. Equivalent model of the lossy coupled transmission-line system in Fig. 1.

Step 6a: Evaluate e$i~)(t) using n such that the initial dc conditions are satisfied, i.e
(~–1/~)(f) + {W1~O– ‘tL’,d

e~k)(f) = X–ltr~L) (t) Zuy(f)= W,d
(k-l/2)(o)}

where w, ,101is the ith element of the vector UJJO.
(k-l/~)(f)> ~ G 1, 2, . . . ,n by

and compute the voltage generators u1,~ Step 7: Connect the Thevenin equivalent circuit {1?>, ZY } to
the FFT and the inverse FFT: Subcircuit II and carry out the transient analysis for the entire time

‘k-’/(f)f) = IFFT{exp(–fl, ) * FFT[2e~j) (t) – u:~~-l)(t)]}.w,d
interval (0 < t < T) to obtain the termmal voltage waveforms
{v:;)(t)}.

Step 6b: Shift the waveforms of the voltage generators
Step 8u: Evaluate c~) (t) using

(L–1/2)(o)}, ~ = 1, 2, . . . ,\~–1i2) t) by the ValUeS {’U]LdO — ‘IL’,CJ
u’ rd (

J)(t) = x(–l) (~)
u~ (t)
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Fig. 3. (a) Iterative waveform simulation of near-end terminal voltage waveforms (left) and far-end terminal voltage waveforms (right) of the active
outer transmission line using waveform relaxation algorithm with G = dlag (1e – 2, 1e – 2, 1e – 2) /Q/cm. (b) Iterative waveform simulation of
near-end terminal voltage waveforms (left) and far-end terminal voltage waveforms (right) of the active outer transmission line using waveform relaxation
algorithm with negligible dielectric loss.

._

@-1/2)(t),i = 1, 2,and evaluate the voltage generators w, ~ . . ..nby
the FFT and the inverse FFT

~(~-L/z)(t) = lFFT{exp(–#, ) * FFT[2e~~) (f) – W[j)(t)]}.,a

Step 8b: Shift the waveforms of the voltage generators
~(~–1/~l(t) by the vahteS {UJz.0 (k–l/~)(o)}, ~ = 1, 2, . . . ,

za — U’a

n such that the initial dc conditions are satisfied, i.e.

(L–U2)(~) + {w,ao – ~’,aw (~)(t) = ~za (~-VV(o)}
za

Step 9: Stop the iteration if the iteration count exceeds a preset

integer number or if the difference between the results obtained in
successive iterations is sufficiently small. Otherwise, set k = k + 1
and go to Step 5 to repeat the iteration process.

Although it is not strictly necessary to shift the waveforms of the
generators evaluated by the Fourier transforms as described in Steps
6b and 8b, this is done so that the initial conditions are satisfied and
to enable the algorithm to converge faster,
Convergence Theorem of Waveform Relaxation Algorithm: For an
n-conductor loss y stripline system terminating in the Thevenin equiv-
alent circuits and satisfying the condition RG = m In, the Waveform

Relaxation Algorithm generates a sequence of waveforms {V$L)(t),

VT) (t) } converging to the exact solution of the terminal voltages
given by (6) and (7). This may be proved by a method similar to
that given in [1].

III. SOME SIMULATIONRESULTS

A triconductor stripline system has been analysed with the pa-
rameters given in Appendix A. The dielectric loss has been chosen

deliberately to be large enough to be effective. The system has
also been simulated by the conventional circuit simulator HSPICE
where the coupled lossy transmission lines are represented by 100
symmetrical blocks (Appendix B) connected in tandem. Extremely
small time steps of 0.2 ps have been used in HSPICE to eliminate
false ringing effects,

The iterative waveforms at the ends of the active outer transmission
line are compared, as in Fig. 3(a). The waveforms generated by the
waveform relaxation algorithm (WR) in the first iteration actually

give the same results with those given by HSPICE. The second
iteration, which gives identical waveforms, is performed only to
ensure convergence HSPICE has taken about 5150 seconds to
simulate the above system while the waveform relaxation algorithm
takes only 6.1 s to perform the two iterations, more than 800 times
faster. This again demonstrates the extreme efficiency and accuracy

that waveform relaxation can provide. Fig. 3(b) shows the simulated
waveforms when the dielectric loss is negligible.

IV. CONCLUSION

An iterative method based on waveform relaxation has been pro-
posed to simulate a set of coupled lossy transmission lines embedded
in a lossy medium. When the dielectric loss to ground is much more
significant than the loss between transmission lines, and the resistive
and dielectric loss matrices satisfy the relation I?G = nLI., the
method decouples the lines by using two congruence transformers
at the ends of the lines. It is accurate and effective regardless of
the magnitude of the dielectric loss. The speed improvement has
been demonstrated to be several hundred times compared with the
conventional method HSPICE. The algorithm is particularly suited to
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Fig. 4. Symmetrical block used in modelhng coupled 10SSYtransmission lines

identical lines with negligible di electric loss between them and are
the same distance from the ground plane. It can also be applied to
coupled lines with the resistive and dielectric loss matrices satisfying

in HSPICE.

APPENDIXB:
SYMMETRICAL RCL BLOCK USED IN HSPICE

Fig. 4 shows the symmetrical block used in modelling coupled
the relation RG = mIn. lossy transmission lines in HSPICE. The values of the lumped

elements in the block are given by
APPENDIXA.

TRICONDUCTORSTRIPLINEPARAMETERS

The triconductor stripline system has been analysed with the 6L, =
L,, * 1

i=l,2.3
following parameters 2 * no of symmetrical blocks

[1

3 1 0.5

L= 1 4 1 nH/cm
0.5 1 3

( )[

44 –lo –4 -
C. ; –lo 35 –lo

–4 –lo 44

L = diag[5/3. 5, 2.5)nH/cnl

C,l = i, J th element of C

15cLJ= Icl,l * 1
l<i<j<3

no. of symmetrical blocks

L,z = ith diagonal element of L

,C = (X;=lq *Z
i=l,2,3

no. of symmetrical blocks

pF/cn]

C’,, = i, jth element of C
R =diag( 2.0, 2.0, 2. O) fl/cm

hi?, =
R,, * 1

G = diag(le – 2. lC – 2. le – 2)jC1/cm 2 * no. of symmetrical blocks
i=l. 2,3

lengtld = 14.14 cm R,, = i.th diagonal element of R

Z.Y = diag( 100.200, 100)(2 6G, =
G,, * 1

r’=1.2.3

ZY = diag(50, 7’5, 50)Q
no. of symmetrical blocks

G,, = ith chagonal element of G
For the Thevenin equivalent voltage sources,

ezx(t) =e3.\- (t) = ely(t) = ezl-(t)
and the mutual inductance coefficients are

= esl(t) = O.Ofor ant

and e Jx (t) is an inverted pulse with value 5V at t = O, falling linearly
to OV at t = 100 ps, staying at OV until t = 600 ps, and starting k,, = & 1</, <j<3

rising linearly to 5V at t = 700 ps, then remaining at 5V for the
rest of the time. L,l = i, jth element of L.
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A Useful Theorem for a Lossless Multiport Network

Xiaowei Shi, Changhong Liang, and Yiping Han

Abstract-A useful theorem is obtaiued for a Iossless multiport network
from the unitary condition of scattering matrix, and is proven to be
equivalent to the unitary condition. Some illustrations are given to show
how to apply the theorem to the analysis of the properties of a Iossless
n-port network.

L INTRODUCTION

In microwave engineering, many passive components can be taken

as lossless. Therefore, analysis and synthesis of lossless networks are

very important.

It is well known that the scattering matrix S of a lossless network

meets the unitary condition

S+S = I. (1)

For a lossless two-port network, the following constrained condi-
tions may result from (1) [1]:

Is,,l = 1s221. Is,,l = 1,%,1 (2)

exp[j(pll +YZZ)] = exp{j[(plz + PZ1) + r]} = det(S) (3)

]s,,1’ + IS2,12= 1s,212+ /s,21’= 1 (4)

in which S,~(i, k = 1, 2) is the element of matrix S,j = =, p,~
is the phase of the element S, ~, det (S) means the determinant of

matrix S.
For a lossless n-port network (n > 2), things become complex.

Multiplying S+ with S and demanding the product-matrix equaf
unitary matrix, we can get n real equations and n( n – 1)/2 complex
equations. Those equations appear in a form different from (2) and
(3). Also, they are not convenient to the analysis of the properties of
a Iossless n-port network.
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In 1991, Liang and Qiu [2] first found that the magnitude relation
(2) may be generalized to a lossless n-port network. This paper shows

that the phase relation (3) may also be generalized to a lossless
n-port network. Furthermore, while the matrix S of a lossless n-
port network (71> 2) meets the generalized magnitude relation and

generalized phase relation, any column (or row) of matrix S must be
a complex unit vector (by using the term complex unit vector, we
mean that the square sum of the magnitude of its elements equals 1),
which is the generalized form of (4). That is to say. for a lossless
n-port network (n > 2), the generalized magnitude relation and

phase relation are equivalent to the unitary condition (1). To be more
important and meaningful, it is found that by using the generalized
magnitude relation and generalized phase relation, the analysis of the

properties of a lossless n-port network becomes much simpler. Three
illustrations are given in this paper.

II. Two THEOREMS FOR LOSSLESS NETWORKS

Because the magnitude of the determinant of a scattering matrix
must be 1 for lossless networks, in this paper, we will always let

det (S) = exp (,jp~) (5)

for a lossless network, where PD is the phase of the determinant of

scattering matrix S.
Theorem 1: For a lossless n-port network, write its scattering

matrix S in partitioned form

(6)

so that at least one of the two submatrix pairs (S~~. Shb ). ( Sab, Sba )

is a square matrix pair. Let .Mtck represent the cofactor of square
submatrix S,~ (i, k = a, b) in det (S); then we have

/det(S,~)l = \IW~~l= ldet(,s~,)l (i, k = a, 6) (7)

arg[det (S,~ )] + arg (fi~,c~) = PD (i, k=a, b) (8)

or, equivalently,

[det (S,,)]* = exp (–jp~)kf~, (i, k = a, b). (9)

Remark: Applying Theorem 1 to a two-port network, we can
get (2) from (7) and (3) from (8). Therefore, we call (7) and (8)
the generalized magnitude relation and generalized phase relations,
respectively. For convenience, in the following we will make use of

(9) instead of (7) and (8).
Proof The proof will be given only fOr the case that (Sab. Sba)

is a square submatrix pair. A similar proof may be easily made for
other cases.

Suppose S.b is an m Xm matrix. Then, Sb. is an (n –m) x (n–m )
matrix, Saa is an m x (n – m) ma~ix, sbb is an (n – m ) x nl ma~ix.
By applying the unitary condition (1) to partitioned matrix (6), we

can get

S:aSaa + S~&a = I._m

,f&sab + S;skb = 1~

– O(n–m)xmS:asab + s~asbb – (lo)

where 1~ represents the m x m unit matrix, 0(. – .,, ~~ represents

an (n – m) X m zero matrix.
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